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Range of problems in which the heat conduction, diffusion, wave and other similar equa- 
tions are encountered and have to be solved over the regions whose shape is time-depen- 

dent, is very large. It includes the cases when the motion of boundaries is given and 

more complex cases when the motion has to be determined from the conditions of the 

problem, 
First kind of problem is met in soil mechanics, dam building theory, etc. [l and 21, 

while the other kind arises in connection with problems of melting and freezing of mate- 

rials, diffusion processes involving phase changes e. a. In the latter case, processes taking 

place in two or more adjacent media have to be considered simultaneously and the law 

describing the displacement of phase boundaries has to be found from the conditions of 
the problem [3 and 42 Some problems of electrodynamics occupy the intermediate 
position, namely those connected with generation of very intense magnetic fields by 

means of rapid compression of a magnetic fiow. These may fall into the first or second 

category, depending on whether the motion of boundaries is assumed given, or has to be 

determined from the conditions of the problem [5 and SJ, 

Exact solutions of problems of this type are, on the whole, obtained by trial and error, 

are known only in a limited number of cases, and usually for a narrow set of initial con- 
ditions (*). More general approach to some of these problems was achieved by the use 
of methods based on integral or integro-differential equations and of numerical methods 

(see the bibliography in p, 4 and 7]). 

This paper presents a basically different method of approach to solving some classes 
of such problems. The method is based on expansion of solutions into series in terms of 
sets of “instantaneous” eigenfunctions of the corresponding problems. Below we consider 
problems of the first kind, i. e. problems in which the motion of boundaries is assumed 
given. It should however be noted that the results obtained can be utilized in solving 

*) Such as, for example, solution of the fundamental Stefan’s problem on freezing of a 
liquid and iu various generalizations. See p and 41. 
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problems of the second kind both in their exact form and as a starting point for the 
method of consecutive approximations* This is due to the fact that in problems of the 
second type, the law obeyed by the moving boundaries can usually be deduced from phys- 

ical considerations and without the actual knowledge of solution of the problrm [see e. g. 

[3], p. 276, Section 1). We should also note that the proposed method can also be used to 
solve certain classes of static problems, in which case the “instantaneous” eigenfunctions 
are replaced by “local” eigenfunctions. 

1 , We shall begin by considering a simple one-dimensional problem in which U is 

dependent on a single Cartesian coordinate x and on time t . Then, the basic diffusion 
equation or equation of beat conduction, has the form 

(3U / at = X23%4 / 3X2 -/- 4 (z, 5) %Q 

where H. is a constant, whiie Q (x, &} is a given function of x and t . 
Let us seek the solution of (1.1) in case when the process under consideration takes 

place in the region whose boundaries x = sl( t) and x = 2z ( ti) move, in general, with 

time. Boundary conditions are given on them and are of the first or second kind, i. e. they 
either are the values of 

ZJ IX=& = fl @), u /a-=$* = f2 @) 

or of normal derivatives 

324 I 3x Ix=& = cpz (Q, aa i 3X i+X=e, = cpa (8) 

where fI (t), fa @>, (1’1 @) and Cp2 (t) are given functions of time. Tn addition, we 

have known initial conditions 

u If=* = F (4, 51 (0) < 2 < 52 (0) 

If boundaries were fixed, i. e. if 51 and z2 were independent of time, then solution 

of the Koblem could be sought in the form (4.2) 

ii = x UJi) (t) Ugci) (5) (i = I, 2) ~u,il) = sin n&J, ok@) = CO5 z~~~_j~‘) 

Her!@?.+(‘) (2) denote the eigenfunctions of rhe problem, which are equal to Q(I) 

for the boundary conditions of first kind and to ukt2) for the boundary conditions of 

second kind (*)* Coefficients U$) (t) of the expansion are given by 

unt(i) (t) = 
f 
sV*(i) (5) U (X, t) dx &“‘. (x) + & 5’U (2, t> U&.(i) (2) & 

t, i, Er 
(i=l, 2) (1.3) 

and can be found from an ordinary Iinf,ar first order differential equation obtained by 
multiply~g (1, I> by p,Cj> (5) &c, integrating the resulting expression in X from 51 to 

sz and utilizing the corresponding boundary and initial conditions {see e, g. IS], Section 

21) l 

Let now 51 = 51(t) and ca = c,( 6) where c~( $) and ga( 6) > zl( if;) are some 

given functions of t . Then (and this is the essence of our method), we shall seek the 
sofution of our problem in the same form (1.2) as in case of fixed boundaries I i e. as 

*) They satisfy the following boundary conditions 

V&(l) {F;*) = UL (‘) (Ez) = 0 and vL W’ (El) = z$~) (4%) = 0. 
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u= 
nk (z - E,) 

y Uk”’ (t) sin 51-4- 
h’=l 1 

for the boundary conditions of first kind when 

(3 4 

or as 

for the boundary conditions of the second kind 

with the understanding that here 51 and sa are no longer constants, but instead known 
functions of time. In other words, u,@) (t) are the coefficents of the expansion of 

function U which is to be determined, at any instant of time, in terms of functions 

uk(l) (5, t) = sin 
Jck (Z - 41) nk (z - 41) 

f or Q(2) (5, t) = cog * ‘5 (f = 51- Cl) 

which we shall call “instantaneous” eigenfunctions (‘) corresponding to the instant $. 

It will be an essential requirement that these coefficients U,@) (t) are, as before, given 

by Formula (1.3) in which u,@) are no longer dependent on X only, but also depend on 

fi , Introducing the expression El(t) 

t@ (t) = s W (z, t) U#) (5, t) d;x: (14 
El(t) 

where W(X. 6) is an arbitrary function of X and fi , we can now write the formula for 
U as 

u = $ $j up (t) vp (2, t) 
k=O 

(i = 1, 2) (1.9) 

To find ukti) (t) we shall multiply, as in case of constant 51 and 52 , Equation (1.1) 
by u~(~)(s, 9 and integrate the resulting expression with respect to X , from {1( 6) to 

52 (6) . This gives 

5 ‘*zQ) (x, t) $ dx = 19 rukW (x, t)g da: + q,(l) (t) 

El il 
(1 JO) 

i e. if we take into account the fact that 
Es(t) Et(t) 4r 0 s u/,(i) (x, t) $ dx = -& 5 I#) (x, t) u dx - s &) (0 

u-+dz- 

Slto 41(t) 410) 

- ia qp (Ea, q u (E2, q + k I Q(~) (El, t) u (El, t) ($1 = &/dt etc. 1 (1 -iI) 

El(t) s uk(l) (x, t) g dx = udx = 
Ed0 

(1.12) 

*) They are the very eigenfunctions in which 24 would have to be expanded into series 
(1.2), had the motion of boundaries terminated at that instant 
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the latter being true for 5 = s(t) by virtue of 

we obtain . 

a+) nk a 
-7P--=- - ( > F 

v,(‘) 

duk(l) 
- + (zg u,(l) = fiy 

dt if1 (9 + (--l)“% (t)] + qp (t) - 

(1.14) 
&I El 

for boundary conditions of the first kind, and 
(1.15) 

for boundary conditions of the second kind. 
Utilizing Formula (1.9) to compute the integrals occurring in (1.14) and (I. 15), we 

finally find 

du,(‘) 
- + (qq up 

dt = 7 If1 (Q + t-pfP (a + !lP w + (1.16) 

+ g g I(-l)“+k EB - Ll &%dbP @) 
rn=l 

- +i,g 
duk@) 

dt uJ2) = xz Cc--~)” ‘pl P) - qh WI + !7P ($1 + (1.17) 

+$ ; [(-iyk to - ill WP, + 2) %a’*) (0 
m==o 

for nL =j- ‘*, for m = k (1.18) 

The initial condition u/r-o = ‘p (Z), .,! (0) < 5 < &I(& from which it follows 
that 

r@) (0) = “*“’ t$‘) (z, 0) r~ It_,, dx = T +W (x, 0) F fz) dx (1.19) 
EIKO 4dW 

now enables us to obtain, for functions ~(‘1 (t) an infinite set of combined linear first 
order differential equations, which yield these functions, provided that initial values 
(1.19) are known. 

If both boundaries are stationary, then all equations for separate ul,fi) become inde- 

pendent of each other and solution can be obtained in terms of quadratures (see 181, 
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pp. 207-210 and following). 

2 . Let us. for the sake of completeness, consider the case of boundary conditions of 

the third kind, when 

where tl( 6) (< = 1 t 2) are given functions, while x and p are either constants or some 

known functions of 8 (in real physical problems we usually have )c > 0, Ll> 0) . 

Let us introduce the following complete system (see @I]. pp. 81-85) of orthonormalized 

functions t@: 
t$*) (5, t) = Al, Eh sin P-2) 

where yk = yk( ti) are the roots of 

Quantities Al, =Ak(t) are found from the normalizing condition 
Et 

s n&*)’ (Z, t) dx = 1 (2.41 
41 

These functions satisfy the differential equation 

aa@ / &?9 = - Y& a@/ Ea 

and boundary conditions 
(2.5) 

extending Expression (1.8) to the value 6 = 3 and utilizing the relations(1.10) to (1.12) 
which are still valid for 5 = 3 provided that in (1.12) the term f&n)a u&t) is replaced 
with (n/E)” r&a) we obtain, for rzk(a) , Equation 

i. e. with (2.6).(2.7) and (2.1) taken into account, 
kt 

CW 

(2.9) 
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The latter, together with the initiat condition (1, 19) in which we pur 3 2, constitute:~ 

an infinite set of combined differential equations with given initial conditions, fc)r tile 

coefficients of z4,f3)(t). 

3 e LJntil no?. we have only considered plane one-dimensional problems. It is easily 

seen that the proposed method can be extended to more complex cases, e. g_ diffusion 

or thermal processes with cylindrical or spherical symmetry, and some more general 
cases. The basic idea of seeking the solution of the problem with movirg boundaries 

in terms of expansion in eigenfunctions of the corresponding problem witn statiortary 
boundaries which, at any instant of time, coincide with the position of actual (moving) 

boundaries (“instantaneous” system of eigenfunctions of the problem) and of setting up 

equations defining the coefficients of this expansion, is maintained, 
Let us consider, for example, such problems in case of boundary conditions of the first 

kind (*) . Basic equation of the problem has the form 

where ?2 = 1 in the cylindrical and n = 2 in the spherical case, while Pl( $1 , Tz ( $1 
and q(r. 8) are given functions. 

We first consider the spherical case. Let the boundary condition be 

u fr=r*(Q II” fa (q 

u lf-3 = P 09 
be the initial conditions. 

Introducing a new function W = ?74 , we can write (3.1) as 

(3.4) 

Boundary and initial conditions will ROW become 

and this reduces the problem to the plane (“*) case already discussed in Section 1. 
Let us now cotiider the cylindrical case. We shall, for simplicity, consider the solid 

cylinder only (Fl = 0) (the case of a hollow cylinder, i. e, ?I( ti) > 0 is as easy and will 
not he considered here}. Equations of the problem will, under rhe additional assumption 

that r,(t) =B(ti),be au Xz 
-= -I 
t3t F ir i+‘l e(rtf-, 81 (3.7) 

l.8 jr=R(t) = f w 1 2.5 if=” = F fr) (0 d r -G fi eat (3.8) 

Eigenfunctions U( r, ti > of the corresponding cylindrical problem for the case when 
the outer ratis 3 of the region is assumed constant are well known, and equal to (**I 

*) In case of boundary conditions of the second or third kind, the procedure is analogous 
to that adopted in Sections 1 and 2. in the plane case. 
**) Boundary conditions for U of the second or third kind would, in general, reduce to 
COnd&&BlS of the third kind for W t i, e. to the case discussed in Section 2. 
“) Ct p] 21.5, p 213, E~genfun~~i~ns for the hollow cylinder i+ e. for the region 
0 <?i <?a .can be found in e.g. PJ. 
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vk (r, I?) = .&, (r.rl;/X) (k = 1, 2, ;I, . . ., 00) (3.9) 
where L& (x] is the Bessel function of zero order, xk are positive roots of Equation 
Jo (X) = 0 and J? is a constant parameter. 

Expansion of the arbitrary function qJ (7”) in terms of functions U,( r,R) has the form 

As we said before, solution of the problem when8 =J? ( $1, will be sought in the same 
form, replacing however J? in (3.9) and (3.10) with a corresponding function of time 
(e, g, U, = Vy [T, 8 (t) ] , etc. ). To obtain the equations for 

RN 
uf., = & (t) = \ ru2Jk [r, I? (t)] dr (3.11) 

il 
we shall again, as in the case +!? = const , multiply 

(3.12) 

by rUrr [r, J?( $)]dr and integrate the result over the limits [O, R ( f;)] (cf. [S-J. 21.5). 
Now, procedure analogous to that used in derivation of (1,14), leads to the relation 

which we supplement with the initial condition 

The above two equations are sufficient for solving the problem. 

4, So far, we have considered problems with moving boundaries for the diffusion 

type equation. However, we can easily see that analogous methods can be applied to 

the wave problems. Suppose we require the solution of 

Pu/W = ?cWufW + q (x, i) 41(t) <z<&ttI P4 

where H is a constant, p (x, 6) is a known function of x and 15 and where boundary 

conditions of the first, second and third kind are given together with initial values 

ZJ It=0 = F1 fg), au / dt It-0 = Fz (5) (51 @dz< E203) c4.21 

forx=cl(t) andX=&(??). 
This problem is completely analogous to that considered in Sections 1 and 2 for the 

diffusion equation and the only difference is in the fact, that, in (4.1) a second time 
derivative of the unknown function appears instead of the first derivative appearing in 
(1.1) and, that following this, two initial conditions are given instead of one in the former 
case. 

Solution will again be sought in form of an expansion in terms of “instantaneotieigen- 
functions of the problem, i, e. in terms of these eigenfunctio~s which would have to be 
utilized, had the boundaries ceased to inove at that particular instant. Since these eigen- 

functfons coincide with the eigenfnnctions of the corresponding diffusion problems, & e, 
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witn the functions uk@) {z, t) (i = 1, 2, 3) introduced in Sections 1 and 2, hence, repeat- 
ing the procedure used in derivation of (1.13) to (1.17) and (2. 8), i. e. multiplying (4.1) 

by u,$) (z, t) and integrating the result from x = <I( 6) to X= 52 (I?) we obtain, 

retaining the former notation, the following expression: 

e. s v+j) (x, t) g dx = x2 
S 
E*vb(i) (x, t) $dx + q#-) (t) = 

I El 

aR2n2 
=-- 

c2 
u,(i) + qp + x2 (4.32 

where ak = TTk in case of boundary conditions of the first or second kind and ak = Yk 

in case of boundary conditions of the third kind, since the right-hand sides of (1.10) and 

(4.3) are identical, We use the easily verified formula 

to transform the left-hand side. 

This equation either with (1.9) (in case of boundary conditions of first or second kind) 
or with (2.7) (in case of boundary conditions of the third kind), values of aU/ a ti obtained 
from (1, 9) or (2.7) (*) by differentiation with respect to 2 and the boundary conditions, 

together make it possible to reduce (4.3) to 

dt” + $g- up 
d%$” 

(4.5) 

= Qf’ (t) + i (p,&.L# + q&.zm’(~)) (k = 0, 1, 2,. . ., co) 
m=o 

Here Q/J (t) is a known function of t ; Pk m and Qkpl are known functions of 51 

and <n and, generally speaking, of their first and second time derivatives and of 6 . We 
supplement (4.5) with initial conditions, first equation of (4 2) yielding the value of 
r+(J) (0) which, in turn, is used to obtain ok @) (0) from the second equation of (4.2). 

Thus, the problem reduces to finding the functions ~a@) (t) from the infinite linear 

*) These series converge, in gepera,l, nonuniformly since U satisfies nonhomogeneous 
boundary conditions, while u($ satur) the corresponding homogeneous conditions. 
Therefore, before differentiating these series with respect to t , we must separate the 
part converging nonuniformly. This is easily done either by employing general rules 
given e. g, in [83 (Chapter XII), or by replacing U in the basic partial differential equa- 
tion by 

u=u- 

say, in case of boundary conditions of the first kind, for which we then obtain an equation 
of the type of (% l), namely a2U a2u 

-@-==X~--- 
829 

a22 -!-Q(% +=@- 
which now has homogeneous boundary conditions U 14, = L: leg = 0. In case of boundary 
conditians of the second or third kind. the treatment is analogous. 
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system (4. 5) with known initial ValueS Of Uk @) (t) and their time derivatives. 

6, Entirely analogous consideration shows that, if we had to solve, instead of (4.1) , 
corresponding wave equations for the spherically (72 = 2) or axially (?2 = 1) symmetric 

problem 6% x2 a -=--r 
at2 p ar ( ) 

n $ + q(n) (I-, t> 

with initial conditions 

+o= F,(r), $,=;, = F2 (9 1 
(n (0) d r d r2 (0)) WI 

and with boundary conditions of the first, second or third kind, then. using the method 

adopted in solving the corresponding problems for (3.1) (“ins:antaneous” eigenfunctions 

for these problems coincide) and utilizing formulas analogous to (4.4) in transforming 
the integrals containing a2U/at", we again arrive at a system of equations of the type 

(4. 5) for u,@) (t), for which the initial values ;,@) (0) and uk@)'(O) are known. 

We shall further note that the same result would be obtained. if, instead of aZU/&?, 

the left-hand sides of (4.1) or (5.1) contained expressions of the type 

a&d f W + bdu / at -I- cu, 
where a , b and C are constant coefficiena. 

6 , Until now we were considering problems, in which diffusion, wave or other more 

general equations described time-dependent processes, boundaries of the region moved 
with time and we had to determine the course of these processes over a period of time. 

We can however attempt’ to apply these concepts to solution of other, e. g. statics prob- 
lems. We shall show it first on the simplest case of the plane Poisson equation, which 
we shall write as - a=u / r3y” = d2U ! ax2 + q (x, y) (64 
where Q (x, E/) is a given function, while the unknown function U(X, y) is given at two 
values of y, say at y = 0 and y = a (qn the segments AB and m ) and on two curves 

x = XI ( JI) and x2 ( y) , 0 2 E/s a (curves.d c and BD in Fig. I). We shall seek U(X, y) 

J c 
in form of a series 

D 
pa -- 

D 

u(2, y) = $ i uk(y) sinfi’[‘i2i(y)1 
k=l 

Y 
_f ----- F rl(Y)<s<%(Y) 

(6.2) 

Functions 
( 4 =2%((Y) -N(@) ) 

0 A 6 x nk rz - 21 (?/>I 
Fig. 1 

vk (z, y) = sin 
4, 

can be called local eigenfunctions of the problem. Using 

again the method employed in Section 4, Equation (4. l), i. e, multiplying (6.1) by 
7J,(X. I/) and integrating it with respect to x from xl ( &I) to xa ( I/), we obtain 

xi(U) 
- 

S 
vk (x, y) e dx = - y uk + qk (Y) + 

MY) 

+ a+izJ [Xi (Y), Yl + (--l)k-lu [xa (Y), Yl) (6.3) 

where the previous notation is maintained, while U [xi ( 1/) , 1/] ( 6 = 1, 2) denote the 

values of U(X. I/) given, by definition, at the points &’ and F of the boundary curves 

(Fig. 1). 
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Transformation of the left-hand side in the manner similar to that used in obtaining 

(4* 5).from (4.3) with I$ replaced by @ , we arrive at a system of equations resembling 
(4.5). which define the coefficients of U,( ,?/I. 
AB and CD where the values 

Boundary conditions on the segments 

u (x, 0) (x1 (0) < x f x2 (0)) and u (xc, a) (-1.1 (a> < 

< 5 < % (a,), are given by definition, yield in addition 
r%(o) %(a) 

ua (0) = 5 u (1, 0) V& (:r, 0) &*, Id& fn) = 
%fOf 

s zz (X, uf De (jl, n) cf.J.s 
x,ict) 

(k I: 2, 2, IL..., M) 
(6.4) 

i.e. in the present case, functions U,( y> will have to be determined from the obtained 

system of linear differential equations according to their values at @ = 0 and y = U 
(boundary value problem). 

In a similar manner we can consider, for Equation (6.X), boundary value problems with 

conditions of the second or third kind and corresponding problems for axisymmetrie 
fields defined by Laplace, Poisson and other equations. 

We shall also note that although we have limited ourselves to problems with two inde- 
pendent variables. the proposed method based on expansion of the sought solution into a 

series in “instantaneous” or “local” eigenfunctions of the problem can obviously be 
applied to the case of rhree or more independent variables and to symme~ies other than 
the plane, cylindrical or spherical, provided that the basic equation of the problem ailows 

at least partial separation of the variables, 

1, 

2, 

3. 

4. 
5. 

6, 

7. 

8. 
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